The findings by the team are sure to garner a great deal of interest in the scientific community and others will no doubt be testing and commenting on their findings. If what they claim passes muster, their work will likely be remembered as one of the great achievements of our time. Explore further New computational approaches speed up the exploration of the universe. More information. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism, Nature Chemistry 2. DOI 1. 0. 1. 03. Abstract. A minimal cell can be thought of as comprising informational, compartment forming and metabolic subsystems. To imagine the abiotic assembly of such an overall system, however, places great demands on hypothetical prebiotic chemistry. The perceived differences and incompatibilities between these subsystems have led to the widely held assumption that one or other subsystem must have preceded the others. Here we experimentally investigate the validity of this assumption by examining the assembly of various biomolecular building blocks from prebiotically plausible intermediates and one carbon feedstock molecules. We show that precursors of ribonucleotides, amino acids and lipids can all be derived by the reductive homologation of hydrogen cyanide and some of its derivatives, and thus that all the cellular subsystems could have arisen simultaneously through common chemistry. The key reaction steps are driven by ultraviolet light, use hydrogen sulfide as the reductant and can be accelerated by CuICuII photoredox cycling. Journal reference Nature Chemistry.